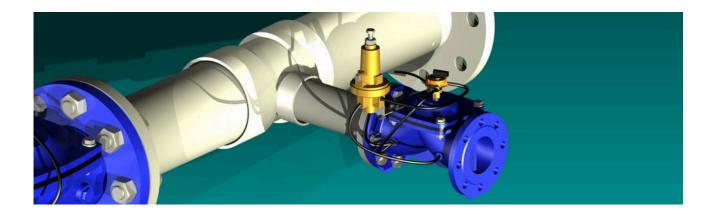


VA LVE HR 10

VALVE <u>HR 10</u>:

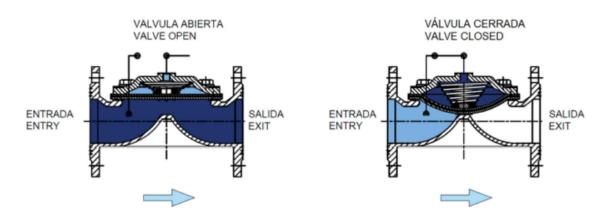

The FLUM VALVES cast iron hydraulic valve is a SANDERS type diaphragm hydraulic valve with a single chamber, with a basic opening and closing operation due to the pressure exerted by the water in the pipeline.

NOTABLE FEATURES:

- □ Flanges in accordance with ISO 7005-2 standard. PN6 and PN16 membranes and springs, with
- □ curved seats in the valve body. Easy access to the control chamber without having to remove the
- □ valve from the pipe. Galvanized steel screws 8.8 or INOX A2-70 with anti-seizing treatment .
- Optimum operation both in horizontal and vertical positions, thanks to its interior ribs that prevent
- lateral and longitudinal deformation of the membrane, keeping the membrane without deformations. Simple and robust design. Low pressure losses thanks to the design of the body and membrane.

MATERIALS

Component	Material
BODY AND LID	GGG ductile iron
PAINT	150 micron thick epoxy-polyester
DOCK	302 stainless steel
DIAPHRAGM	Natural rubber reinforced with nylon fabric

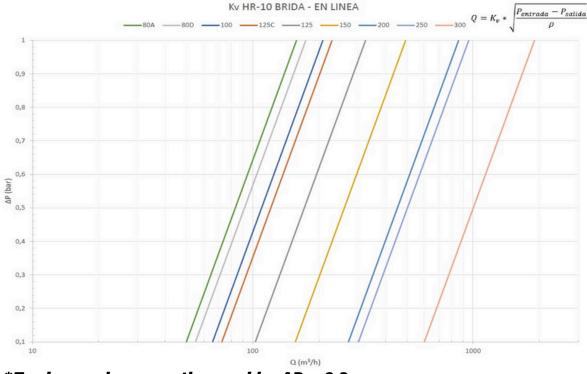


FUNCTIONING

The valve opens or closes hydraulically depending on the pressure applied to the top of the diaphragm:

- If the applied pressure is equal to or greater than the inlet pressure, the valve closes completely tight.
- If the applied pressure is lower than the input pressure, the valve opens completely.

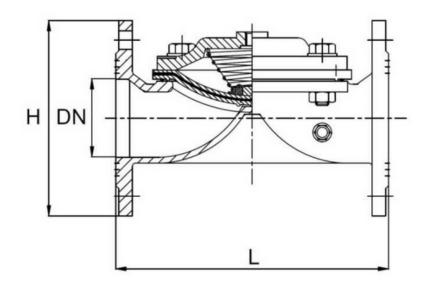
Using the hydraulic valve we can regulate the pressure or flow in a pipe, varying the volume of water in the upper part of the diaphragm.



HYDRAULIC SPECIFICATIONS

We carry out opening and closing tests on each valve individually, complying with the UNE EN-12266-1 of 2013 regulations, which regulates valve tests, test procedures and acceptance criteria for pressure tests.

LOAD LOSS


Pressure loss test carried out according to UNE EN-1267 regulations.

CONNECTIONS	D.N. (mm)	DN		Nominal pressure	Minimum working pressure		
CONNECTION		(inches)	kvs	Nominal pressure	Minimum working pressure		
CONNECTION		(inch)		(Bar)	(Kg/cm 2)		
	80A	3″ (3-3-3)	158	6	0.5 - 0.8		
	00A			16	1.2 - 1.5		
	80D	3″ (3-4-3)	174	6	0.5 - 0.8		
	80D			16	1.2 - 1.5		
	100	4"	208	6	0.5 - 0.8		
FLANGE FLANGED				16	1.2 - 1.5		
	125C	5″ (5-4-5)	229	6	0.5 - 0.8		
				16	1.2 - 1.5		
		5″ (5-5-5)		6	0.8 - 1.0		
	125		325	16	1.5 - 1.8		
) 6″ 49		6	0.8 - 1.0		
	150		494	16	1.5 - 1.8		
				6	0.8 - 1.0		
	200	8″	860	16	1.5 - 1.8		
				6	0.8 - 1.0		
	250	10″	955	16	1.5 - 1.8		
				6	1.0 - 1.2		
	300	12″	1900	16	1.5 - 1.8		

PHYSICAL SPECIFICATIONS:

- □ All our flange valves comply with the European standard UNE EN-1092 regarding the measurements of the connection flanges.
- □ Also available with flange according to ANSI regulations upon request.

CONNECTIONS CONNECTION	Material	D.N. (mm)	DN (inches) (inch)	L (mm)	h (mm)	Nominal pressure Nominal pressure (Bar)	Number of h No. of holes	Veight Weight (Kg)
FLANGE FLANGED	GGG50	80A	3″ (3-3-3)	250	205	6 16	8	11.20
	GGG50	80D	3″ (3-4-3)	280	205	6 16	800	
	GGG50	100	4"	300	220	6 16	Ū	21100
	GGG50	125C	5" (5-4-5)	330	255	6		
	GGG50	125	5″ (5-5-5)	330	255	16 6	8	25:00
	GGG50	150	6″	390	285	16 6		00100
	GGG50	200	8″	475	343	16 6	8-PN10	
	GGG50	200	8″	475	343	16 16	12-PN16	68.00
	GGG50	250	10″	500	405	6	12-PN10 12-PN16	90.00 90.00
	GGG50	250	10″	500	405	16		
	GGG50	300	12″	584	460	16	12-PN10	121.00
	GGG50	300	12″	584	460	6 16	12-PN16	121.00

*Approximate measurements, tolerances in accordance with ISO 700562 and UNE-EN 1092-2.

WARNINGS:

- Do not install the product without first reading and understanding the safety instructions.
- □ Pressure equipment, do not handle under load.
- This type of equipment must be handled by qualified personnel. The assembly, handling or maintenance of this equipment must be carried out by personnel with appropriate experience.
- □ Hidráulica Romyspan is not responsible for any failure caused by the manipulation of the equipment by personnel other than the company.
- Hidráulica Romyspan is not responsible for possible damages or injuries due to misuse of the equipment.

SECURITY INSTRUCTIONS

- To install the valve in the correct direction, the date on the valve body must coincide with the direction of water flow.
- The valves must not be installed underground. If you have to install it underground, mount it inside a closed box.
- □ For greater durability of the equipment, it is recommended to install a filter to avoid stones and impurities in the control system.

WHAT TO DO IF?

Material	POSSIBLE	PROCEDURE			
	REASON				
	WRONG CONNECTIONS OR VALVES CLOSED INSULATORS	CHECK THE COMPLETE CONNECTION AND THE POSITION OF THE INSULATING VALVES. IF NECESSARY, MODIFY ASSEMBLY AND OPEN INSULATING VALVES TO ALLOW WATER FLOW.			
	CLOGGED FILTER	REMOVE THE MICROTUBE LEAVING THE FILTER TO CHECK IF THERE IS WATER FLOW. CLEAN FILTER MESH OR REPLACE IF NECESSARY			
THE VALVE DOES NOT	BLOCKED CIRCUIT	EXAMINE CONNECTING PIPES FROM THE INLET AND CHECK FOR FLOW. CLEAN OR CHANGE ACCESSORY IF NECESSARY.			
CLOSE	BROKEN MEMBRANE OR SPRING	REMOVE COVER AND EXAMINE MEMBRANE AND SPRING. REPLACE DAMAGED ELEMENT IF NECESSARY.			
	CALCIFIED SOLENOID	REMOVE AND CHECK SOLENOID CORE. CLEAN OR REPLACE IT IF NECESSARY.			
	PILOT OR RELAY DRAIN VALVE MAIN CHAMBER	INSPECT PILOT OR RELAY FOR WORN, DEFECTIVE PARTS OR FAILURE IN ASSEMBLY. CHANGE DEFECTIVE COMPONENTS OR COMPLETE PILOT.			
	WRONG CONNECTION OR CLOSED INSULATING VALVES	CHECK THE COMPLETE CONNECTION AND THE POSITION OF THE INSULATING VALVES. IF NECESSARY, MODIFY ASSEMBLY AND OPEN INSULATING VALVES TO ALLOW WATER FLOW.			
THE VALVE DOES NOT	INSUFFICIENT PRESSURE UPSTREAM OF THE VALVE	EXAMINE INLET PRESSURE, IF IT IS INSUFFICIENT, CHANGE MEMBRANE AND SPRING FOR A MODEL FOR LOWER WORKING PRESSURES.			
OPEN	BROKEN MEMBRANE OR SPRING	REMOVE COVER AND EXAMINE MEMBRANE AND SPRING. REPLACE DAMAGED ELEMENT IF NECESSARY. REMOVE AND CHECK SOLENOID CORE. CLEAN OR REPLACE IT IF			
	CALCIFIED SOLENOID	NECESSARY. INSPECT PILOT OR RELAY FOR WORN PARTS,			
	PILOT OR RELAY DOES NOT DRAIN VALVE MAIN CHAMBER	DEFECTIVE OR FAILURE IN ASSEMBLY. CHANGE DEFECTIVE COMPONENTS OR COMPLETE PILOT. REMOVE THE MICROTUBE LEAVING THE FILTER TO CHECK IF			
	CLOGGED FILTER	THERE IS WATER FLOW. CLEAN FILTER MESH OR REPLACE IF NECESSARY.			
THE VALVE DOES NOT	MISADJUSTED PILOT	TIGHTEN AND LOOSE THE PILOT ADJUSTMENT SCREW AND OBSERVE IF THERE IS A REACTION. IN CASE OF CORRECT REACTION, RE-ADJUST THE PILOT TO THE DESIRED PRESSURE EXAMINE PILOT WORKING RANGES. IF IT IS OUT OF THE RANGE,			
REGULATE PROPERLY	WORKING PRESSURE OUTSIDE THE PILOT WORKING RANGE	CHANGE THE INTERNAL SPRING OF THE PILOT OR COMPLETE PILOT. INSPECT PILOT OR RELAY FOR WORN, DEFECTIVE PARTS OR			
	FAULTS IN REGULATOR PILOT	FAILURE IN ASSEMBLY. CHANGE DEFECTIVE COMPONENTS OR COMPLETE PILOT. EXAMINE THE MEMBRANE AND IF IT IS DAMAGED, REPLACE IT			
THE VALVE DOES NOT	MEMBRANE LOSES WATER	WITH A NEW ONE. POSSIBLE DIRT LOCATED BETWEEN THE MEMBRANE AND ITS			
CLOSE COMPLETELY	THE CONTACT SURFACE OF THE MEMBRANE DOES NOT MAKE A CORRECT CLOSURE	SUPPORT ON THE VALVE BODY. MANUALLY CLOSE THE VALVE AND IF THE PROBLEM CONTINUES, OPEN THE VALVE COMPLETELY TO CLEAN THE SUPPORT AREA OF THE MEMBRANE.			

Hidráulica Romyspan se exime de responsabilidad respecto a errores de la información expuesta en este documento, la cual podrá ser modificada sin previo aviso. Todos los derechos están reservados. ©Copyright.

HIDRÁULICA ROMYSPAN S.L. C/Bogotá s/n nave 1-2-3 Pol. Ind. LA SERRETA MURCIA (30500) España TEL: +34 968 80 94 87

www.romyspan.com

La empresa se reserva el derecho de modificar las especificaciones sin previo aviso. (The company company signate company specifications without previous notice)